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Abstract-The fully developed temperature fold and axial velocity profile are measured for a fluid with a 
Prandtl number of 80 at the outlet of a long horizontal tube which is heated electricahy. The deftig partial 
differential equations are solved by finite difference techniques to obtain the secondary flow patterns as 
well as the temperature field and axial velocity field. Relatively large secondary flows are found for tempera- 
ture diierences between the wall and the fluid as low as O+X”F. For (GP)* greater than 30 boundary layer 
theory appears to be a good approximation to the temperature tieId. There are large temperature gradients 
near the wall; the isotherms in the core are horizontal and there is a significant temperature variation in 
the vertical direction. Although the secondary flow had a huge effect on the temperature field it had little 
effect on the axial velocity distribution as has been predicted for large Prandtl number. The secondary flow 
pattern shows relatively large upward velocities near the wall and small downward velocities m the core, 
The thicknesses of the velocity and temperature boundary layers are approximately equal. These results 
agree with a treatment of the problem, based on dimensional reasoning, that has been presented in a 

previous paper from this laboratory. 

NO~C~~E 

tube radius; 
heat capacity ; 
Grashof number = (a3/3gp2AT)/,uz; 
acceleration of gravity ; 
heat-transfer coefficient = q/AT; 
thermal conductivity of the fluid; 
Nusselt number = qa/ATk; 
pressure normalized with respect to 

P (W2; 
Prandtl number = cp/k ; 
rate of heat transfer to the fluid per 
unit area; 
radial distance normalized with re- 
spect to a ; 
~~~~~ number = @< Kvflltl; 

tempera&e of the fluid ; 

* Presently with General Electric Co., San Jose, California 

temperature at the wall; 
bulk averaged temperature of the 
fluid ; 
= Tw - TB; 

= (T - ~)/(~ff/k~; 
velocity in the vertical direction norm- 
alized with respect to ( W) ; 
bulk averaged velocity ; 
axial velocity normalized with respect 
to (W; 
= w/P,; 
distance in the vertical direction 
normalized with respect to (I ; 
distance in the horizontal direction 
normalized with respect to a; 
distance in axial direction normalized 
with respect to a; 
coefficient of thermai expansion ; 
normalization parameter for the ther- 
mal boundary layer ; 
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angle measured from the bottom of 
the tube ; 
viscosity ; 
vorticity normalized with respect to 

W>la; 
density ; 
time normalized with respect to 

alW>: 
stream function normalized with res- 
pect to a(W). 

1. INTRODUCTION 

AN ANALYSIS of the effect of the secondary flow 
arising from fluid density variations in a heated 
horizontal tube on the primary flow and on the 
temperature profile has been presented in a 
previous paper from this laboratory [l], to be 
referred to as SMRH. The analysis is supported 
by experiments and computer computations to 
be described in this paper. The system con- 
sidered in SMRH is a long tube with a constant 
heat input per unit length and with a constant 
temperature around the inside circumference at 
any axial location. Far downstream, a fully 
developed condition is attained for which the 
velocity field is not changing in the direction of 
mean flow and for which the temperature of the 
fluid and the wall are increasing linearly with 
distance downstream. By studying these fully 
developed velocity and temperature profiles the 
difficulty of accounting for the previous history 
of the field is avoided. 

This system has been approximated in the 
laboratory by electrically heating the outside of 
a 36-ft length of 2: in. i.d. pipe through which 
ethylene glycol is circulated. The pipe is in- 
sulated with 3 in. of glass wool to minimize heat 
losses to the surroundings. By using a relatively 
thick wall, 1 in., and a material of high thermal 
conductivity, aluminum the heat flux to the 
outside was distributed in the pipe wall so that 
the temperature around the inside wall showed 
only a small variation even though the local heat- 
transfer coefficient changed by as much as 
40-fold around the circumference. After 
establishing that a fully developed condition 

was attained the temperature profile and the 
velocity profile were measured at the outlet of 
the heat-transfer section. 

A numerical solution of the partial differen- 
tial equations describing the fully developed flow 
was obtained by finite difference techniques. 
These calculations had the advantage over the 
laboratory experiments in that they yielded 
direct information on the secondary flow. How- 
ever, the stability of the calculational scheme 
limited the magnitude of the Grashof number 
which could be investigated. The laboratory 
study therefore complemented the numerical 
calculation both by providing a check on the 
numerical methods and by extending the range 
of variables. 

The analysis presented in SMRH is based on 
the assumption of the existence of a thin thermal 
boundary layer near the wall and on the 
assumption that the isotherms outside the 
thermal boundary layer are horizontal. The 
validity of the boundary layer assumption 
depends on the magnitude of GP, since the 
thickness of the thermal boundary layer 6,, is 
given as 

6, = a(GP)-*. (1) 

where P is the Prandtl number, a is the tube 
radius and G is the Grashof number based on 
the radius of the tube and AT the difference 
between the wall temperature and bulk averaged 
temperature. It has also been shown that if 
P = 1 the axial velocity varies over the tube 
cross section in a manner similar to the tempera- 
ture and that the change of the axial velocity and 
temperature in the core is of the same magnitude 
as the bulk averaged velocity (W) and the 
temperature difference AT. These conclusions 
for P z 1 are supported by the velocity and 
temperature measurements made with heated 
air by Mori et al. [2]. 

The experiments reported m this paper extend 
available experimental results to larger Prandtl 
numbers and lend support to some of the con- 
clusions reached in SMRH regarding the effect 
of P. Conditions for these experiments have been 
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deliberately selected so that the effect of the 
density variation in the axial direction was 
small. 

2. EXPERIMENTAL 

The laboratory experiments were performed 
with a heat transfer section that is constructed 
of three 12 ft lengths. The inside diameter was 
bored to a diameter of 2525 + OGO5 in. and a 
microlinish of 20. Heat was supplied by & x 
0.20 in. Chromel-A heating tape wound at a 
pitch of $ in. over two layers of insulating tape. 
An auxiliary heating tape was added to the exit 
end to compensate for axial heat conduction 
through the pipe wall. The fiberglass insulation 
that covered the whole length of the heat- 
transfer section limited the heat loss to the 
surroundings to about 1 per cent of the total 
power dissipated in the heaters. 

The temperature of the wall was measured at 
intervals along the entire length of the pipe with 
thermocouples whose junctions were approx- 
imately -& in. from the inside wall. At the 
measuring station thermocouples were spaced 
at 45” intervals around the circumference of the 

pipe. 
The temperature of the ethylene glycol fed 

to the heat-transfer section was carefully con- 
trolled. Therefore the bulk temperature 7” at 
any location in the heat-transfer section was 
calculated from the measured power supplied to 
the heating elements and heat losses through the 
insulation. (See equation 27 of SMRH.) Tests 
were conducted under conditions where TW - 
TB was constant over the last 6 ft of the heat- 
transfer section. 

Velocity and temperature profiles were meas- 
ured 8 in. and 14 in from the end of the heat- 
transfer section using a traversing mechanism 
that entered through the end of the pipe. The 
probe holder could pivot as well as rotate so that 
it was located at different radial positions to 
+OWj5 in. and at different angular positions to 
f 1-O”. The temperature probe consisted of a 
30 gauge iron-constantan thermocouple 

cemented inside a i in. piece of stainless steel 
tubing A Pitot tube was used to measure the 
axial velocity gradient. The pressure difference 
was measured to +0905 mm Hg with a Pace 
Model P9OD tranducer. The Pitot tube and 
pressure transducer were calibrated by making 
measurements under isothermal conditions for 
which the velocity profile in the pipe is known. 

Details about the experimental procedures 
are to be found in a Ph.D. thesis by Siegwarth 

PI- 

3. COMPUTER CALCULATIONS 

The time dependent partial differential equa- 
tions representing the vorticity, the stream 
function and the temperature were approx- 
imated by finite difference equations and solved 
on the computer. Initially the axial velocity 
profile was assumed to be parabolic. The steady 
state stream function calculated with this 
assumption was used to compute a new axial 
velocity distribution and the procedure was 
repeated. 

In these calculations all velocities are norm- 
alized with respect to the bulk averaged velocity 
( W), lengths, with the radius a, pressures with 
respect to p(W)‘. The average heat flow to the 
fluid per unit area 4 and the velocity (W) are 
not varying with time so the bulk average 
temperature TB is constant. A dimensionless 
temperature t is defined as the difference between 
the fluid temperature T and the bulk averaged 
temperature normalized with respect to 2qa/k 
where k is the thermal conductivity of the fluid. 
A solution is sought for which the wall tempera- 
ture T, is not varying around the inside cir- 
cumference of the pipe, but is varying with time. 
Therefore, although the average heat flux is 
constant the local heat flux varies with circum- 
ferential position and with time. If axial density 
gradients are neglected and the fully developed 
region of the heat transfer section is considered 
the dimensionless time dependent equations 
describing the vorticity, the stream function, the 
axial velocity and the temperature are as 
follows : 
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2NG 
__ 

+ R2 
+ lt,cosB (2) r 

V2$= -5 (3) 

w, + ; (rl/~W, - Il/,wJ = f v2w - P, (4) 

t, + f (I)($, - I&) = & V2t - & w. (5) 

In the above equations the Nusselt number N 
and the Reynolds number R are defined using 
the radius a and the temperature difference AT. 
Since Tw is a function of time, AT and N also 
vary with time. The boundary conditions are 

r=l; *=t+!~~=w=O, t=& 

r = 0; $,<,w,tarefinite 

o=o; *=<=we=te=o (6) 

8 = x; I) = 5 = w, = to = 0. 

Another equation is needed to define the pres- 
sure gradient P,. Since axial density gradients 
are neglected, the pressure gradient is constant 
over the cross section of the tube and (4) can be 
divided by P, to give 

a, + ; (1C/& - $$e) = ; v% - 1, (7) 

where 

w = @P,. (8) 

Since the average velocity remains constant the 
following integral defines P, : 

P, = [n/i d 8r dr do] (9) 

The values of 5, II/, w, t and P, can be calculated 
for given values of R, P, and NG by solving (2), 
(3), (5), (7) and (9) using boundary conditions (6). 

The vorticity and steam function were set 
equal to zero throughout the whole field at 

z = 0. Initially the temperature field is zero 
everywhere except at the wall and the heat flux 
is not varying around the circumference. From 
the definition of the dimensionless temperature 
at/i% = 0.5 at the wall for z = 0. 

The numerical procedure was similar to that 
employed by Wilkes and Churchill [4] to solve 
the problem of free convection in a two-dimen- 
sional cavity where one side wall is heated and 
the other cooled. The vorticity and temperature 
equations were solved by an extension of the 
alternating direction implicit (A.D.I.) method 
[S, 61 and the stream function equation was 
solved using successive over relaxation. 

The finite difference equations are written m 
cylindrical coordinates with variable mesh 
spacing in the radial direction. A fine radial grid 
spacing was used near the wall where the 
temperature and velocity gradients are large and 
a coarse spacing in the center where the gradients 
are small. Because of the singularity of the co- 
efficients in the differential equations at the 
origin special attention had to be given to the 
formulation the difference equations at r = 0 
[7]. Details of the numerical procedures are 
presented in a Ph.D. thesis by one of the authors 

PI. 
Some of the differences from the work of 

Wilkes and Churchill are outlined in an 
appendix to this paper. 

4. FULLY DEVELOPED TEMPERATURE PROFILES 

Computed temperature distributions for 
(GP)” = 8.33 and for (GP)* = 31.0 are shown 
in Figs. 1 and 2. Measured temperature distri- 
butions for (GP)* = 31.9 and for (GP)* = 51.3 
are shown in Figs. 3 and 4. In the absence of 
secondary flow the Nusselt number is 24/11. 
The computed N = 4.58 for Fig. 1 indicates that 
even at small heating rates (AT z O*OS“F) free 
convection is having a strong effect on the heat 
transfer. For (GP)* greater than 30 boundary 
layer theory appears to be a good approximation 
to the temperature field. As previously found in 
experiments with air [2] the temperature in the 
core varies mainly in the vertical direction and 
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I%G. 1. Computed temperature distribution. 

the magnitude of the variation is of the same 
order as AT. 

The wall was not quite thick enough to 
maintain a uniform circumferential temperature 
at the inside. The wall temperature in Fig 3 
varies from 106.4”F at the bottom to 107.O”F at 
the top and in Fig. 4, from 150.5”F to 156*8”F. 
Considering this variation the agreement bet- 
ween the measurements in Fig 3 and the com- 
putations in Fig. 4 are reasonable. 

The variation of the local Nusselt number 
around the circumference for the results in Figs. 
2 and 4 is shown in Fig 5. It is seen that the 
local heat-transfer rate can vary considerably 
and that at the very top of the tube the heat- 
transfer rates are of the same magnitude as 
would be expected for laminar forced con- 
vection. The average of the Nusselt numbers in 

0.4 - 

7.100.4*F 

FIG. 2. Computed temperature distribution 

Fig. 5 is about 15 per cent higher than N. This 
reflects the errors in evaluating temperature 
gradients close to the wall. 

Temperature profiles for different horizontal 
levels in the tube are presented in Figs. 6 and,7. 
The temperature boundary layer close to wall 
is clearly evident although its thickness is some- 
what larger than is required for the asymptotic 
approximations in SMRH to be completely 
accurate. 

5. AXIAL VELOCITY PROFILJcs 

Although the secondary flow had a large effect 
on the temperature it had little effect on the 
axial velocity distribution. Measured and com- 
puted horizontal and vertical profiles shown in 
Figs. 8-11 are close to a parabolic shape, as 
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FIG. 3. Measured temperature distribution. 

predicted in SMRH for large P. The slight 
differences in the computed profiles and a 
parabola indicate the Prandtl number was not 
quite large enough for secondary flow to be 
having a negligible effect on the axial velocity. 
The measurements in Figs. 10 and 11 show a 
small velocity increase in the bottom of the pipe 
due to secondary flow and symmetry about the 
vertical axis. However the maximum in the 
velocity profile appears to be above the hori- 
zontal axis. This trend is probably due to the 
decrease of viscosity with height in the pipe 
because of the increase in temperature. The 
change in temperature affected the viscous 
stresses in the fluid but it also affected the viscous 
correction applied to the readings from the Pitot 

FIG. 4. Measured temperature distribution. 

tube. Some of the distortion could be due to 
errors in applying this viscous correction. 

The difference from a parabolic shape cited 
above is less interesting than the similarity. It 
is therefore appropriate that we compare the 
results presented in this paper with the order of 
magnitude estimates in SMRH. 

The estimated order of magnitude of the ratio 
of the inertia to the viscous terms in the equation 
describing the axial velocity distribution is 
(PG)*/P. For the results shown in Figs. 8 and 10 
this ratio is 0.39 and 060 respectively. It is 
apparent that it is not necessary for (PG)*/P to 
be exceedingly small for the secondary flow to 
be having an unimportant role. 

In order for axial density gradients to have a 
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FIG;. 10. Measured vertical velocity profile 

negligible effect it has been estimated in SMRH 
that 2NG/PRz must be a small number. A more 
accurate assessment can be obtained for the 
experimental conditions treated in this paper 
by using the solution presented by de1 Casai and 
Gill [S] for the case of negligible effects due to 
secondary flow. 

w = 2(1 - r2) +i$(l - r2)cose 

1 

00) 

It is seen that axial temperature gradients will 
have an effect on the velocity gradients at the 
wall of less than 10 per cent if NG/PR' is less 
than 0.8. For the results in Figs. 8 and 9 NG,/PR' 
= 0.09 and for Figs. lOand NG/PR2 = 0.24. 
It is apparent that axial density gradients have 
a negligible effect on the results presented in this 
paper. 

6. SECONDARY FLOW PATTERNS 

Calculated stream functions which have been 
made dimensionless with respect to the average 
axial velocity and the tube radius are shown in 
Figs. 12 and 13. 

As the Grashof number increases the pattern 
becomes more asymmetric with respect to the 
horizontal and the gradient near the wall 
becomes large compared to the gradient in the 
center of the pipe. These trends are in agreement 
with the visual studies of R. D. Mikesell [9], 
who examined the motion of colored streamers 
in a heated horizontal pipe. The eye of the 
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FIG. 12. Stream function for the secondary flow. 

secondary pattern could easily be located by 
determining that place in the tube at which the 
colored streamer moved in a straight line. 
Mikesell found that the eye moved downward 
and closer to the wall as the Grashof number 
increased. 

The vorticity distribution for G = 1.16 x lo4 
is shown in Fig. 14. The vorticity takes large 
negative values in the region of the wall, reaches 
its maximum positive value at Y = 0.9 and then 
decreases rapidly. The vorticity is quite small, 
that is of order 10e3, in the center region where 
no lines of constant vorticity are shown. The 
vorticity profile for 8 = 90” is shown in Fig. 15. 
Two types of secondary flow patterns were 
suggested in SMRH for P + co, depending on 
whether the velocity of the return flow is small 

I 
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FIG. 13. Stream function for the secondary flow. 

or large. As evidenced by the large temperature 
variation in the core, the results presented in 
this paper indicate a secondary flow pattern 
with a small return flow. This is more directly 
illustrated by the temperature and secondary 
velocity profiles shown in Figs. 16-18. Even for 
the relatively small value of (GP)f = 31 a 
distinct boundary layer behavior is indicated. In 
order to indicate the extent of the thermal 
boundary layer the core temperatures, defined 
by horizontal isotherms, are extrapolated to the 
wall in Figs. 16-18. As suggested in SMRH the 
temperature and velocity boundary layers have 
approximately the same thicknesses. 

It is predicted in SMRH that a consequence 
of the horizontal isotherms and the neglection 
of thermal conduction in the core is that the 



36 D. P. SIEGWARTH and T. J. HANRATTY 

FIG. 14. Vorticity distribution. FIG. 15. Vorticity profile at 6 = 90” 

ratio of the vertical velocity component to the 
axial velocity component should be a constant 
on any horizontal level in the core. Table 1 
indicates that this prediction is confirmed for 
the calculated velocity field for G = 1.16 x 104. 
In the Table x and y are dimensionless distances 
in the vertical and horizontal directions. 
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APPENDIX Y at the radial position i can be written as 

A. The Use ofa Spacing with Vuridde Mesh Size fOllOWS: 

A section of the finite-difference network is 
shown in Fig. 19. The, approximations of the du/ =[ tl,,, - ~~i_Jirl:l*r, + Eli_,. & i 
angular derivatives are obtained by using stand- 
ard centered difference formulas. 

64.3) 

8U Uj+l - Us-1 

s= 260 
(A.1) The derivatives at i - 1 and i + 1 are approxi- 

mated by forward and backward differences to 

a2U 
@-= 

Uj+ 1 - 2Uj + Uj- 1 
give 

AtP ’ 64.2) 
au uj - ui-1 

The fmited~eren~ representations of radial (A.41 

derivatives are more complicated because Ar, 
;j;:i-l= Ar, 

in Fig. 19 may not equal Ar,. By using a linear dU Ui+1 - Ui 

interpolation the first derivative with respect to & = Ar, tA.5) 
i+1 
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-0.02 I I.0 0.9 0.8 0.7 0 
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where 

FIG. 18. Temperature and velocity distributions in the 
boundary layer for 0 = 135”. 

FIG;. 19. Finite-difference network 

The following relation for the first derivative is 
obtained by substituting(A.4) and (A.5) into (A.3) If the radial positions 1, 2 and 3 are defined 

au as shown in Fig. 19, the second derivative with 
ay =fiui+l + V; - fJ ui - f2ui_l, (A.6) respect to r can be written as 

I 

Table 1. Ratio of u/w in the cow 

Y x = -0.6 x = -0.3 x=0 x = 0.3 x = 0.6 

0 -- 0.00637 - 0.00344 - 0.00249 -000216 - 0.00221 
0.08 - 0.00340 -000213 
0.1 - OQO249 
@16 - 0.00628 _ --0.00219 
@17 - 0.00339 -o+JO215 
0.2 __ - 000250 
0.3 ._ - oQO340 -000251 -0.00217 
0.35 - 0.00564 - 0.00229 
0.4 - 0@0255 
0.5 - 000263 
0.52 - 0.00344 - 000203 
0.6 - QOO213 
0.7 - 000279 
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(A-9) 

By linear interpolation the first derivative at 
point 2 is given by 

(A.lO) 

The approximations of the first derivative at the 
points 1 and 3 are 

au Ui - Ui- 1 

&= Ar, 
(A.1 1) 

au Ui+ 1 - Ui 

ar 3 Ar, 
(A.12) 

The expression for the second derivative is 
obtained by substituting (A.lO), (A.ll) and (A.12) 
into (A.9). 

a5 
s. = 91”i+l - @I + g21”i + gZ”i-1 

I 

(Al3) 

g1=&(Ar2~Ar,) 
(A.14) 

‘,‘&(Ar,: Ar)’ 
(A.15) 

B. Evaluation of the Stream Function 

The stream function at time (n + 1) AZ is 
computed by the method of successive over 
relaxation. If I,?!? denotes the mth approximation 
of the stream function at time (n + 1) AZ, the 
next approximation is calculated as 

where 

Q = 91 + g2 - 3f2 -fi) + &. (A.17) 
I I 

If (A.16) is solved at each mesh point for pro- 
gressively increasing values of i andj, all quanti- 
ties on the right-hand side are known. The 
stream function at the new time is obtained by 
iterating (A.16) until the difference between the 
~i,j calculated from two successive iterations is 
less than some predetermined parameter. The 
criterion used in this work is 

#m.+ 1) _ +!m! (0.001 @m.+ 1) 
1.J 1.J 1.J ’ (A.18) 

It was found experimentally that if $2 = 1.5 only 
one iteration was needed, except at very small 
times. Therefore a constant value of $2 = 1.5 
was used for the relaxation parameter. 

C. Values of the Variables on the Boundaries 

The local Nusselt number is calculated from 
the temperature gradient at the wall after each 
time step. 

N j,n+l = 
WWII,j,n+l 

tr,,+ 1 

(A.19) 

Let the mesh point next to the boundary be 
designated by r,_ 1 and that at the second mesh 
point away be r,_ 2. Define Ar, and Ar, as 
follows : 

Ar, = 1 - rI_l (A.20) 

Ar2 = r1-l - rl-2, (A.21) 

The backward finite-difference approximation, 
correct to the order of Art, for the temperature 
gradient at the wall is 

at 
ar = 

3tI,j,n - 4tI-l,j,n + tk,j,n 

2Ar, 
(A.22) 

1,j.n 

The temperature at point rk is calculated by 
linear interpolation. 

tk,j,, = tr-1 + ?(tI_z - tZr_1). (A-23) 
* 
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Since tr for time step n + 1 is calculated from 
the average of the Nusselt number around the 
circumference at the end of time step n, 

1 
fI,n+l = __ 

2N, 
(A.24) 

If (A.22), (A.23) and (A.24) are substituted into 
(A. 19), 

where Ar 1 and Ar, are given by (A.20) and (A.21 ). 
On the boundary 5 = - a2$.iar2, SO 

0.5 
f L\T2 fl--2.J.n 

I 
(A.25) 51, j,n+ 1 = s~~~J.~~ 

The new value of the average Nusselt number at 
time (n + 1) AZ, taken as 

8 

N n+l = SN, + (1 - S); 
s 

Nj++r de, 

0 
(A.26) 

is used to evaluate the wall temperature for the 
next time step. It was found that this boundary 
condition causes instabilities near the boundary 
when S = 0. A value of S = 08 was used in the 
calculations. 

The vorticity at the boundary also varies with 
time. Wilkes and Churchill [4] computed new 
wall vorticites by using a Taylor series expansion 
for the stream function in the vicinity of the wall. 
This procedure has been modified by using the 
smoothing factor suggested by Pearson [9]. 
Both $ and a$/& are zero at the wall. The 
Taylor series expansion for II/ can therefore be 
written as follows : 

(A.27) 
,= 1 

ti _ 
I 2.J 

= (Arl + ArJ2 a2$ 
2! ar2 ,=r 

If 

a”*, 

8r3 ?=I 

is eliminated between (A.27) and (A.28) 

(A.30) 

Two different values of the smoothing factor 
were used. For G = 49, S = 0 and for G = 1.16 
x 104, S = 0.8. 

At the point r = 0 (i = 0) the stream function 
and vorticity are zero. The temperature and 
axial velocity are calculated from (4) and (5). 
Terms in these differential equations whose co- 
efficients go to infinity as r + 0 are evaluated by 
considering the limit as suggested by Albasiny 
[7]. The temperature equation which applies at 
r=Ois 

E+_____ a2* at a+ a2t 
aT dear ar ar aear 

(A.31) 

Equation (A.31) can be used to calculate the 
temperature at r = 0 on the ray e = i/2 0’ = 1) 
where due to symmetry, tl,l,n = t-.r,~~, rl.l+l.n 
= t-l,I-l,n, tl,l-l.n = t-l.f+l.n and +r,~~ = 
- $ _ 1, 1. n. If these symmetry conditions are used 
in the finite difference approximation of (A.31), 
the following equation is obtained for the first 
half time step : 

(Ar, + Ar,)3 a3$ - -- 
3! ar3 r=l 

(A.28) %,lA;,;.l,. $;;,” f,,,+r;A;;;.+r.n 

/ I i 
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1,lfl.n - %,n + h,z-1, rl 

1 
---iv 

Rp 0,4n* (A.32) 

For the second half of the time step 

to,z,n+1 - IO,, - t1,1-1,n Il/l,l,n 
A?1212 Ahr 

1,i+1,n - 2h,b + 

Ar2 Ao2 

1 
--w 

RP O,l,n* (A.33) 

Equation (A.32) is implicit in r so it is necessary 
to invert a matrix for the ray 8 = n/2 in order 
to calculate l& Equation (A.33) is explicit so 
to, [,“+ 1 can be calculated directly from it. 

The values of the unknowns are much more 
easily obtained on the boundaries 6’ = 0 and 
8 = K than at the wall or at r = 0. The vorticity 
and stream function are zero there. The axial 

velocity and temperature are obtained by using 
the symmetry conditions. For example at 0 = 0 

~i,1 = pi,_, (A.34) 

t., = ti,_l 

,:1 = -Il/i,-i. 

(A.39 

(A.36) 

Equations for the temperature and axial velocity 
on @ = 0 are obtained by substituting (A.34), 
(A.35) and (A.36) into the finite difference repre- 
sentations of (5) and (7). 

D. Procedure 

The computational procedure to go from 
rzAr to (n + 1) AZ is as follows: 

(1) Solve for the temperature at the new time 
(n + 1) AZ. The finite difference representation 
of (5) is used for the interior points. Equations 
(A.24), (A.32), (A.33), and (A.39 are used to 
define the temperature on the boundaries. 

(2) Equation (A.30) is used to evaluate the 
vorticity at the solid boundary. 

(3) The finite difference representation of (2) 
is used to calculate 5, + , . 

(4) Equation (AM) is solved for &,+i. 
(5) Check the vorticity to see if it has con- 

verged. If not return to (1). 

ETUDE EXPERIMENTALE ET NUMERIQUE DE L’EFFET DE L’ECOULEMENT 
SECONDAIRE SUR LE CHAMP DE TEMPERATURE ET L’ECOULEMENT PRIMAIRE 

DANS UN TUBE HORIZONTAL CHAUFFE. 
R&u&--Le champ de temperature et k protil de vmesse axiale entierement developpk sont mesurk pour 
un fluide avec un nombre de Prandtl de 80 a la sortie dun long tube horizontal qui est chat& electrique- 
ment. Les equations aux d&iv&es partielles de definition sont resolues par da techniques de differences 
finks pour obtenir les configurations d’kcoulement secondaire ainsi que les champs de temperature et de 
vitesse axiale. On a trouve des Bcoulements secondaires relativement Bevbs pour des differences de tem- 
perature entre la paroi et le fluide aussi faibles que 0,03 “C. Pour (GP)* plus grand que 30, la theorie de 
la couche limite semble 6ntre une bonne approximation du champ de temperature. I1 existe des gradients 
de temperatures Clevks p&s de la paroi ; les isothermes darts le noyau sont horizontales et il y a une variation 
sensible de temperature dam la direction verticale. Bien que l’kcoulement secondaire avmt un grand effet 
sur le champ de temperature, il en avait peu sur la dist~bution de vitesse axiale telle qu’elle a et& predite 
pour un nombre de Erandtl eleve. La configuration d’6coulement secondaire montrait des vitesses vers 
le ham relativement Bev6es prb de la paroi et dam le noyau des vitesses vers le bas faibles. Les Cpaisseurs 
des couches limites de vitesse et de temperature sont approximativement &gales. Ces rtsultats sont en 
accord avec un traitement du probleme base sur un raisonnement dimensionnel, qui a ettt presenJ dans 

un article prbtdent venant de ce laboratoire. 

RECHNERISCHE UND E~~RIME~LLE ~ERSUCHUNG DES EINFLUSSES DER 
SEKUND~RSTR~MUNG AUF DAS TE~E~TURF~LD UND DIE 

PRIMXRSTRGMUNG IN EINEM BEHEIZTEN WAAGERECHTEN ROHR 

Zusammcnfassung-Das vollstandig entwickelt Temperaturfeld und das axiale Geschwindigkensprofl 
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emer Fliissrgkeit wurden am Austritt emes langen zyhndrischen Rohres, das elektrisch beheizt 1st bei emer 
Prandtl-Zabl von 80 gemessen. 

Die beschreibenden partiellen Differentialgleichungen, fur das Sekundlr-Stromungsfeld werden mtt 
einem Differenzenverfahren gel&t und hefem sowohl das Temperaturfeld als such das axiale Gesch- 
windigkeitsfeld. Verhiiltnismassig grosse Sekundarstromungen wurden bei Temperaturdifferenzen von 
0,05 “F zwischen der Aussenwand und der Fliissigkeit gefunden. Ftir (GP)* griisser als 30 erhah man mit 
der Grenzschttheorie eine gute Naherung filr das tatsachliche Temperaturfeld. Grosse Temperaturgradien- 
ten treten in der Nlhe der Aussenwand auf; die Isothermen im Kern verlaufen horizontal. Zu vertikaler 
Richtung besteht ein bedeutender Temperaturunterschied. Obwohl die Sekundiirstrijmung das Tempera- 
tuefled stark vertidert hat sie wenig Einfluss auf die Verteilung der axialen Geschwindigkeit, wie es fur 
eine grosse Prandtl-Zahl vorausgesagt wurde. Das Se.kundlrstri+mungsfeld zeigte relativ grosse nach 
oben gerichtete Geschwindigkeiten nahe der Rohrwand und kleinere abw%rts gerichtete Geschwindigketten 
im Kern. Die Dicke der Geschwindigkeits- und der Temperaturgrenzschicht sind annfihemd gleich 

Diese Ergebnisse stimmen mit einer Rehandlung des Problems tiberein, die sich auf eine Dimensions- 
betrachtung stfitzt und in einer vorhergehenden Veriiffenthchung des Laboratoriums gezeigt wurde. 

iII/ICJEHHbItl PACYET M ~KCHEPWMEHTA~IbHOE HCC:IEQ()HAHLIE 
BJIBHHMR BTOPHYHOPO HOTOKA HA TEMHEPATYPHOE HO;IE H 

OCHOBHOD HOTOH B T’OPB30HTA,TIbHOH HAI’PEBAEMOH TPYBKE 

AHHOT4l~EiJi-~3Mep3HbI IIOJIHOCTbK) p33BllTbIe ItpO@HLN'I TeMIIepaTypbI II ar;CHaJbHOfi 

CKOpOCTI4 Ha BbIXOAe I13 RJIllHHOfi rOpH3OHTaSbHOti TPY6H, HarpemeMoR WIeIiTpWSeCKIlM 

TOKOM IlpII 3HaYeHHM WICJIa npaHgTJIf% HWJJKOCTM paBHOM 80. Onpa&t’.XnKimne ~IU$@epc- 
H~PiaJI'bHbIe ypaBHeHI4R B qaCTHbIX npOW3BORHbIX peIII3I0TCR MeTOAOM KOHeYHbIX pa3HOCTefi 

Am onacannn MoRenet% BTO~MYH~~~ TeqeHIm, a TaKme TeMnepaTypnoro no.nr+ n atcc:na;Ibnoif 
CIiOpO~T~I.~~~pa3HOCTe~TeM~epaTypbICTeHKAIIX(II~KOCTEIB 0,05OF Hai~eHbIOTHOCIlTeJIbH0 
6OJIbUIlle BTOPIWHbIe TeYeHIIR. OKa3bIBaeTCH, qT0 npli (GP)1'4 > 30 TeMnepaTypHOe nOJie 

XOpOLIIO annpOKCMMMpyeTCFICIIOMO~bIO TeOpllI, nOrpaHWIHOr0 CJIOH.~CTeHKLlIlMeIOT MeCTO 

6onbtmie TeMnepaTypHbIe rpaAHeHTb1; CI30TepMbI B Hnpe RBJIRFJTCH rOpI130HTaJ[HbIMII, H B 

BepTMKaJIbHOM HaIIpaBuJleHIU4 npOllCXOAMT 3HaYMTeJIbHOe I13MeHeHHe TeMWpaTypbI. AYOTR 

BTOpWIHOe TeqeHHe OKa3bIBaeT 6oJIbluOe BJIPiHHHe HaTeMIIepaTypHOe nOJIe, OIiO M;I;IO BZIHReT 

Ha pacnpefieJreH&fe aKcManbIzoti CKOPOCTLI, KaK 6b1no paCCWiTaH0 JJJIR 6OlIbIIIOrO WICJIa 

npaHgTJIH. BBmra~r CTeHOK PiMeIOT MeCTO OTHOCMTeJIbHO 6onbmne HanpaBJIeHHble BBepX 

CKOPOCTH BTOpWIHbIX Te'ieHElti EI MaJIbIe HanpaBJIeHHbIe BHI43 CKOpOCTIl B FIApe. TOnIIWHbI 

nOrpaHWIHbIX CJIOeB CKOPOCTI? 14 TeMnepaTypbI npPi6JIIUKeHHO paBHb1. 3TR pe3yJIbTaTbI 

cor~acyIoTc~ c AaHKbIMrr pasMepKor0 aHann3a, npegcTaBneHHor0 B npe;lbiRyweti CTaTbe 

naaHoti na60paTopHH. 


