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Abstract—The fully developed temperature field and axial velocity profile are measured for a fluid with a
"Prandtl number of 80 at the outlet of a long horizontal tube which is heated electrically. The defining partial
differential equations are solved by finite difference techniques to obtain the secondary flow patterns as
well as the temperature field and axial velocity field. Relatively large secondary flows are found for tempera-
ture differences between the wall and the fluid as low as 0-05°F. For (GP)* greater than 30 boundary layer
theory appears to be a good approximation to the temperature field. There are large temperature gradients
near the wall; the isotherms in the core are horizontal and there is a significant temperature variation in
the vertical direction. Although the secondary flow had a large effect on the temperature field it had little
effect on the axial velocity distribution as has been predicted for large Prandtl number. The secondary flow
pattern shows relatively large upward velocities near the wall and small downward velocities 1n the core.
The thicknesses of the velocity and temperature boundary layers arc approximately equal These results
agree with a treatment of the problem, based on dimensional reasoning, that has been presented in a
previous paper from this laboratory.

NOMENCLATURE Ty,  temperature at the wall;
a, tube radius; Tp, bulk averaged temperature of the
¢, heat capacity; fluid ;
G, Grashof number = (a*8gpAT)/u?; AT, =Ty—Ty;
' acceleration of gravity; t, = (T — Tp)/2qa/k);
h, heat-transfer coefficient = g/AT; u, velocity in the vertical direction norm-
k, thermal conductivity of the fluid; alized with respect to (W) ;
N, Nusselt number = qa/ATk; (W3, bulk averaged velocity;
P, pressure normalized with respect to LA axial velocity normalized with respect
p W), to {W);
P, Prandtl number = cu/k; W, = w/P,;
q, rate of heat transfer to the fluid per X, distance in the vertical direction
unit area; normalized with respect to a;
T, radial distance normalized with re- ¥y, distance in the horizontal direction
spect to a; normalized with respect to a;
R, Reynolds number = (a{Wp)/u; z, distance in axial direction normalized
P, = dP/oz; with respect to a;
T, temperature of the fluid ; B, coefficient of thermal expansion ;
Or, normalization parameter for the ther-
* Presently with General Electric Co., San Jose, California. mal boundary layer;
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0, angle measured from the bottom of
the tube;

iy viscosity;

¢, vorticity normalized with respect to
W)la;

0, density;

T, time normalized with respect to
a/{W>;

v/ stream function normalized with res-

pect to a{W>.

1. INTRODUCTION

AN ANALYSIS of the effect of the secondary flow
arising from fluid density variations in a heated
horizontal tube on the primary flow and on the
temperature profile has been presented in a
previous paper from this laboratory [1], to be
referred to as SMRH. The analysis is supported
by experiments and computer computations to
be described in this paper. The system con-
sidered in SMRH is a long tube with a constant
heat input per unit length and with a constant
temperature around the inside circumference at
any axial location. Far downstream, a fully
developed condition is attained for which the
velocity field is not changing in the direction of
mean flow and for which the temperature of the
fluid and the wall are increasing linearly with
distance downstream. By studying these fully
developed velocity and temperature profiles the
difficulty of accounting for the previous history
of the field is avoided.

This system has been approximated in the
laboratory by electrically heating the outside of
a 36-ft length of 2% in. id. pipe through which
ethylene glycol is circulated. The pipe is in-
sulated with 3 in. of glass wool to minimize heat
losses to the surroundings. By using a relatively
thick wall, 1 in., and a material of high thermal
conductivity, aluminum, the heat flux to the
outside was distributed in the pipe wall so that
the temperature around the inside wall showed
only a small variation even though the local heat-
transfer coefficient changed by as much as
40-fold around the circumference. After
establishing that a fully developed condition

was attained the temperature profile and the
velocity profile were measured at the outlet of
the heat-transfer section.

A numerical solution of the partial differen-
tial equations describing the fully developed flow
was obtained by finite difference techniques.
These calculations had the advantage over the
laboratory experiments in that they yielded
direct information on the secondary flow. How-
ever, the stability of the calculational scheme
limited the magnitude of the Grashof number
which could be investigated. The laboratory
study therefore complemented the numerical
calculation both by providing a check on the
numerical methods and by extending the range
of variables.

The analysis presented in SMRH is based on
the assumption of the existence of a thin thermal
boundary layer near the wall and on the
assumption that the isotherms outside the
thermal boundary layer are horizontal. The
validity of the boundary layer assumption
depends on the magnitude of GP, since the
thickness of the thermal boundary layer J;, is
given as

S = a(GP)™ . (1)

where P is the Prandtl number, a is the tube
radius and G is the Grashof number based on
the radius of the tube and AT the difference
between the wall temperature and bulk averaged
temperature. It has also been shown that if
P =1 the axial velocity varies over the tube
cross section in a manner similar to the tempera-
ture and that the change of the axial velocity and
temperature in the core is of the same magnitude
as the bulk averaged velocity (W) and the
temperature difference AT. These conclusions
for P~ 1 are supported by the velocity and
temperature measurements made with heated
air by Mori et al. [2].

The experiments reported 1n this paper extend
available experimental results to larger Prandtl
numbers and lend support to some of the con-
clusions reached in SMRH regarding the effect
of P. Conditions for these experiments have been
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deliberately selected so that the effect of the
density variation in the axial direction was
small.

2. EXPERIMENTAL

The laboratory experiments were performed
with a heat transfer section that is constructed
of three 12 ft lengths. The inside diameter was
bored to a diameter of 2-525 + 0-005 in. and a
microfinish of 20. Heat was supplied by < x
020 in. Chromel-A heating tape wound at a
pitch of 3 in. over two layers of insulating tape.
An auxiliary heating tape was added to the exit
end to compensate for axial heat conduction
through the pipe wall. The fiberglass insulation
that covered the whole length of the heat-
transfer section limited the heat loss to the
surroundings to about 1 per cent of the total
power dissipated in the heaters.

The temperature of the wall was measured at
intervals along the entire length of the pipe with
thermocouples whose junctions were approx-
imately - in. from the inside wall. At the
measuring station thermocouples were spaced
at 45° intervals around the circumference of the
pipe.

The temperature of the ethylene glycol fed
to the heat-transfer section was carefully con-
trolled. Therefore the bulk temperature Ty at
any location in the heat-transfer section was
calculated from the measured power supplied to
the heating elements and heat losses through the
insulation. (See equation 27 of SMRH.) Tests
were conducted under conditions where Ty —
Tg was constant over the last 6 ft of the heat-
transfer section.

Velocity and temperature profiles were meas-
ured 8 in. and 14 in. from the end of the heat-
transfer section using a traversing mechanism
that entered through the end of the pipe. The
probe holder could pivot as well as rotate so that
it was located at different radial positions to
+0-005 in. and at different angular positions to
+1-0°. The temperature probe consisted of a
30 gauge iron—constantan thermocouple

cemented inside a g in. piece of stainless steel
tubing. A Pitot tube was used to measure the
axial velocity gradient. The pressure difference
was measured to +0-005 mm Hg with a Pace
Model P90D tranducer. The Pitot tube and
pressure transducer were calibrated by making
measurements under isothermal conditions for
which the velocity profile in the pipe is known.

Details about the experimental procedures
are to be found in a Ph.D. thesis by Siegwarth

[3].

3. COMPUTER CALCULATIONS

The time dependent partial differential equa-
tions representing the vorticity, the stream
function and the temperature were approx-
imated by finite difference equations and solved
on the computer. Initially the axial velocity
profile was assumed to be parabolic. The steady
state stream function calculated with this
assumption was used to compute a new axial
velocity distribution and the procedure was
repeated.

In these calculations all velocities are norm-
alized with respect to the bulk averaged velocity
{W?), lengths, with the radius g, pressures with
respect to p{ W )2 The average heat flow to the
fluid per unit area g and the velocity (W) are
not varying with time so the bulk average
temperature T, is constant. A dimensionless
temperature ¢ is defined as the difference between
the fluid temperature T and the bulk averaged
temperature normalized with respect to 2ga/k
where k is the thermal conductivity of the fluid.
A solution is sought for which the wall tempera-
ture Ty is not varying around the inside cir-
cumference of the pipe, but is varying with time.
Therefore, although the average heat flux is
constant the local heat flux varies with circum-
ferential position and with time. If axial density
gradients are neglected and the fully developed
region of the heat transfer section is considered
the dimensionless time dependent equations
describing the vorticity, the stream function, the
axial velocity and the temperature are as
follows :
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1 1
ér + ;‘('/fofr - l//rﬁo) = E Vz‘f
+ Z{I:Z_G (t, sin 6 + %tocos 0> 2)
Vi = ¢ ()
1 1
Wt (oW, = Ypwg) = 2 VAW — P, (4)

1
Lo+ Wl — Ut = g5 Vit = w9
In the above equations the Nusselt number N
and the Reynolds number R are defined using
the radius g and the temperature difference AT.
Since Ty is a function of time, AT and N also
vary with time. The boundary conditions are

1

r=1; y=y¢y,=w=0, t=m
r=0; & w,tare finite

0=0; y=t=w=r,=0  ©
O=m;, y=E,=wyg=1,=0.

Another equation is needed to define the pres-
sure gradient P, Since axial density gradients
are neglected, the pressure gradient is constant
over the cross section of the tube and (4) can be
divided by P, to give

1 1
0+ g, = Yy = g VR = L ()

where
w= WP, (8)

Since the average velocity remains constant the
following integral defines P,:

wor dr 6] )

Ot

P, = [n]

The values of &, ¥, w, t and P, can be calculated
for given values of R, P, and NG by solving (2),
(3), (5), (7) and (9) using boundary conditions (6).

The vorticity and steam function were set
equal to zero throughout the whole field at

7 = 0. Initially the temperature field is zero
everywhere except at the wall and the heat flux
is not varying around the circumference. From
the definition of the dimensionless temperature
ot/or = 05 at the wall for T = 0.

The numerical procedure was similar to that
employed by Wilkes and Churchill [4] to solve
the problem of free convection in a two-dimen-
sional cavity where one side wall is heated and
the other cooled. The vorticity and temperature
equations were solved by an extension of the
alternating direction implicit (A.D.I) method
[5, 6] and the stream function equation was
solved using successive over relaxation.

The finite difference equations are written in
cylindrical coordinates with variable mesh
spacing in the radial direction. A fine radial grid
spacing was used near the wall where the
temperature and velocity gradients are large and
a coarse spacing in the center where the gradients
are small. Because of the singularity of the co-
efficients in the differential equations at the
origin special attention had to be given to the
formulation the difference equations at r = 0
[7] Details of the numerical procedures are
presented in a Ph.D. thesis by one of the authors
[3].

Some of the differences from the work of
Wilkes and Churchill are outlined in an
appendix to this paper.

4. FULLY DEVELOPED TEMPERATURE PROFILES

Computed temperature distributions for
(GP)* = 833 and for (GP)* = 310 are shown
in Figs. 1 and 2. Measured temperature distri-
butions for (GP)* = 319 and for (GP)* = 513
are shown in Figs. 3 and 4. In the absence of
secondary flow the Nusselt number is 24/11.
The computed N = 4-38 for Fig. 1 indicates that
sven at small heating rates (AT = 0-05°F) free
convection is having a strong effect on the heat
transfer. For (GP)* greater than 30 boundary
layer theory appears to be a good approximation
to the temperature field. As previously found in
experiments with air 2] the temperature in the
core varies mainly in the vertical direction and
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the magnitude of the variation is of the same
order as AT.

The wall was not quite thick enough to
maintain a uniform circumferential temperature
at the inside. The wail temperature in Fig. 3
varies from 106-4°F at the bottom to 107-0°F at
the top and in Fig. 4, from 150-5°F to 156-8°F.
Considering this variation the agreement bet-
ween the measurements in Fig. 3 and the com-
putations in Fig. 4 are reasonable.

The variation of the local Nusselt number
around the circumference for the results in Figs.
2 and 4 is shown in Fig 5. It is seen that the
local heat-transfer rate can vary considerably
and that at the very top of the tube the heat-
transfer rates are of the same magnitude as
would be expected for laminar forced con-
vection. The average of the Nusselt numbers in
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Fi1G. 2. Computed temperature distribution.

Fig. 5 is about 15 per cent higher than N. This
reflects the errors in evaluating temperature
gradients close to the wall.

Temperature profiles for different horizontal
levels in the tube are presented in Figs. 6 and.7.
The temperature boundary layer close to wall
is clearly evident although its thickness is some-
what larger than is required for the asymptotic
approximations in SMRH to be completely
accurate,

5. AXIAL VELOCITY PROFILES
Although the secondary flow had a large effect
on the temperature it had little effect on the
axial velocity distribution. Measured and com-
puted horizontal and vertical profiles shown in
Figs. 8-11 are close to a parabolic shape, as
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predicted in SMRH for large P. The slight
differences in the computed profiles and a
parabola indicate the Prandtl number was not
quite large enough for secondary flow to be
having a negligible effect on the axial velocity.
The measurements in Figs. 10 and 11 show a
small velocity increase in the bottom of the pipe
due to secondary flow and symmetry about the
vertical axis. However the maximum in the
velocity profile appears to be above the hori-
zontal axis. This trend is probably due to the
decrease of viscosity with height in the pipe
because of the increase in temperature. The
change in temperature affected the viscous
stresses in the fluid but it also affected the viscous
correction applied to the readings from the Pitot
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tube. Some of the distortion could be due to
errors in applying this viscous correction.

The difference from a parabolic shape cited
above is less interesting than the similarity. It
is therefore appropriate that we compare the
results presented in this paper with the order of
magnitude estimates in SMRH.

The estimated order of magnitude of the ratio
of the inertia to the viscous terms in the equation
describing the axial velocity distribution is
(PG)*/P. For the results shown in Figs. 8 and 10
this ratio is 0-39 and 060 respectively. It is
apparent that it is not necessary for (PG)}/P to
be exceedingly small for the secondary flow to
be having an unimportant role.

In order for axial density gradients to have a
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negligible effect it has been estimated in SMRH
that 2N G/PR? must be a small number. A more
accurate assessment can be obtained for the
experimental conditions treated in this paper
by using the solution presented by del Casaland
Gill [8] for the case of negligible effects due to
secondary flow.
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F1G. 11. Measured horizontal velocity profile.

1 NG

w=2(1 - r2)+4PR2

r{l —r¥)cosf (10)
It is seen that axial temperature gradients will
have an effect on the velocity gradients at the
wall of less than 10 per cent if NG/PR? is less
than 0-8. For the results in Figs. 8 and 9 NG/PR?
= 0-09 and for Figs. 10 and 11 NG/PR? = 0-24.
It is apparent that axial density gradients have
a negligible effect on the results presented in this

paper.

6. SECONDARY FLOW PATTERNS

Caliculated stream functions which have been
made dimensionless with respect to the average
axial velocity and the tube radius are shown in
Figs. 12 and 13.

As the Grashof number increases the pattern
becomes more asymmetric with respect to the
horizontal and the gradient near the wall
becomes large compared to the gradient in the
center of the pipe. These trends are in agreement
with the visual studies of R. D. Mikesell [9],
who examined the motion of colored streamers
in a heated horizontal pipe. The eye of the
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secondary pattern could easily be located by
determining that place in the tube at which the
colored streamer moved in a straight line.
Mikesell found that the eye moved downward
and closer to the wall as the Grashof number
increased.

The vorticity distribution for G = 1:16 x 10*
is shown in Fig. 14. The vorticity takes large
negative values in the region of the wall, reaches
its maximum positive value at r = 09 and then
decreases rapidly. The vorticity is quite smdll,
that is of order 1073, in the center region where
no lines of constant vorticity are shown. The
vorticity profile for § = 90° is shown in Fig. 15.
Two types of secondary flow patterns were
suggested in SMRH for P — oo, depending on
whether the velocity of the return flow is small
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or large. As evidenced by the large temperature
variation in the core, the results presented in
this paper indicate a secondary flow pattern
with a small return flow. This is more directly
illustrated by the temperature and secondary
velocity profiles shown in Figs. 16-18. Even for
the relatively small value of (GP)* =31 a
distinct boundary layer behavior is indicated. In
order to indicate the extent of the thermal
boundary layer the core temperatures, defined
by horizontal isotherms, are extrapolated to the
wall in Figs. 16-18. As suggested in SMRH the
temperature and velocity boundary layers have
approximately the same thicknesses.

It is predicted in SMRH that a consequence
of the horizontal isotherms and the neglection
of thermal conduction in the core is that the
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ratio of the vertical velocity component to the
axial velocity component should be a constant
on any horizontal level in the core. Table 1
indicates that this prediction is confirmed for
the calculated velocity field for G = 116 x 10%
In the Table x and y are dimensionless distances
in the vertical and horizontal directions.
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APPENDIX
A. The Use of a Spacing with Variable Mesh Size

A section of the finite-difference network is
shown in Fig. 19. The, approximations of the
angular derivatives are obtained by using stand-
ard centered difference formulas.
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The finite-difference representations of radial
derivatives are more complicated because Ar,
in Fig. 19 may not equal Ar,. By using a linear
interpolation the first derivative with respect to
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Fic. 17. Temperature and velocity distributions in the
boundary layer for 8 = 90°,

r at the radial position i can be written as
follows:

| Ou
i— 5;

The derivatives at i — 1 and i + 1 are approxi-
mated by forward and backward differences to
give

f}_z_t
or

du

i+1  Or

Ar, + ou
i-1|Ary + Ary  Or

i-1

(A.3)

du U — Uy
- A (A4)
Ou o
Flir - A, (A.5)
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Fig. 18. Temperature and velocity distributions in the
boundary layer for § = 135°.

The following relation for the first derivative is

obtained by substituting (A.4)and (A.5)into (A.3)

ou

ar i = fiir1 + (o — i) ui — frui—y, (A6)

S+

Fic. 19. Finite-difference network.

1 Ar, :
1=, (Aﬁ;ﬂ;) (A7)

1 Ar,
e o L

If the radial positions 1, 2 and 3 are defined

as shown in Fig. 19, the second derivative with

Table 1. Ratio of u/w in the core

respect to r can be written as

x =03 x =06

x= —06 x=—-03 x=0
—0-00637 —0-00344 —0-00249 -000216 -0-00221
- -0-00340 — —000213
— — -0-00249 — -
—0-00628 — — — -—-0:00219
— —0-00339 — -0-00215 -
- .,_ — 000250 - _
- —0-00340 —0-00251 — 000217
- 000564 -— o —0-00229
— - — 000258 -
— — —0-00263 —
-— —-000344 o —0-00203 -
- -— —0:00213 - —
— - —0:00279 —
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0%u| _ (0ufor)|, — (Qujor)[,
or?|, Ar,

By linear interpolation the first derivative at

point 2 is given by
ou| | ou 2Ar, + QE‘
, \lor 1 [\Ary + Ar, or|,
(A.10)

or
The approximations of the first derivative at the
points 1 and 3 are

(A9)

i

_6u
s or

ou W, — U
| =77 A1l
or |, Ar, ( )
ou Uy — U
I =4r A12
or |, Ar, ( )

The expression for the second derivative is
obtained by substituting (A.10), (A.11) and (A.12)
into (A.9).

u
32| T 9ttiv1 — 91 + g2)ui + gat;—,
(A13)
1 2
g = E(M) (A.14)
1 2
= (—=) 1
g2 Ar, (Arz + Ar1> (A.15)

B. Evaluation of the Stream Function
The stream function at time (n + 1)At is
computed by the method of successive over
relaxation. If {™) denotes the mth approximation
of the stream function at time (n + 1) Az, the
next approximation is calculated as
lII(M+ 1) _

— -y + Q[é.-,,-,,.ﬂ

0
+ ( f‘) WL+

( ﬁ) Yy

1
2 AD> <'/’: 1t ‘/’(m+ ! ))] ,  (A.16)

where

1 2
0=9:+9,— 'r'i(fz -fi)+ AT (A.17)

If (A.16) is solved at each mesh point for pro-
gressively increasing values of i and j, all quanti-
ties on the right-hand side are known. The
stream function at the new time is obtained by
iterating (A.16) until the difference between the
¥, j calculated from two successive iterations is
less than some predetermined parameter. The
criterion used in this work is

Y™ <0001 ™D (A18)

It was found experimentally that if Q = 1-5 only
one iteration was needed, except at very small
times. Therefore a constant value of Q = 1-5
was used for the relaxation parameter.

‘//(;:n]+ 1) _

C. Values of the Variables on the Boundaries

The local Nusselt number is calculated from
the temperature gradient at the wall after each
time step.

(0t/01) |1, j,n+ 1

N =
i Un+1

(A.19)
Let the mesh point next to the boundary be
designated by r;_,; and that at the second mesh
point away be r;_, Define Ar, and Ar, as
follows:

Ary=1-r_, (A.20)
(A.21)

The backward finite-difference approximation,
correct to the order of Ar?, for the temperature
gradient at the wall is

Ary=r_y—r1_,

ot 3.
67’ Lij,n

4t 1t bjn
2Ar,

The temperature at point r, is calculated by
linear interpolation.

(A22)

Ar,
bojon=1-1+ E(tl_z —t-y). (A23)
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Since t; for time step n + 1 is calculated from
the average of the Nusselt number around the
circumference at the end of time step n,

1
2N,

If (A.22), (A.23) and (A.24) are substituted into
(A.19),

(A.24)

lpn+1 =

15
Nj,n+1 = 2Nn [R tI.).n

(38, + Ar . N 05 .
2Ar, + 2Ar, ) TR Ap, TR
(A.25)

The new value of the average Nusselt number at
time (n + 1) Az, taken as

[}

2
N,y =S8N, + (1 — S)% SNMH do,
0
(A.26)

is used to evaluate the wall temperature for the
next time step. It was found that this boundary
condition causes instabilities near the boundary
when S = 0. A value of S = 0-8 was used in the
calculations.

The vorticity at the boundary also varies with
time. Wilkes and Churchill [4] computed new
wall vorticites by using a Taylor series expansion
for the stream function in the vicinity of the wall.
This procedure has been modified by using the
smoothing factor suggested by Pearson [9].
Both y and dy/or are zero at the wall. The
Taylor series expansion for ¥ can therefore be
written as follows:

Ar? 3%y A 3%
Ve = e |, T st ae |, A
(A, + Ay 0y
l//I—Z.j = 21 o et
_(Ary + M)’ Y (A.28)
31 or |, _, '

If
s

$> | r=1
is eliminated between (A.27) and (A.28)

oXy Ary + Ar2>
IR (G
1

RV ALY ] A2
where Ar, and Ar, are given by (A.20) and (A.21).
On the boundary & = — 0%/dr?, so

él,j,n-#l = Sé],].ﬂ

Ary + Ar
— 21 - S)[(M‘A—rri) Vie1pm
1

1
*72)7 Wl—z.;.n] (A.30)

(Ar, + A

Two different values of the smoothing factor
were used. For G = 49,8 = 0 and for G = 1:16
x 104, § = 0-8.

At the point r = 0 (i = 0) the stream function
and vorticity are zero. The temperature and
axial velocity are calculated from (4) and (5).
Terms in these differential equations whose co-
efficients go to infinity as r — 0 are evaluated by
considering the limit as suggested by Albasiny
[7]. The temperature equation which applies at
r=0is

o, v v o
ot 000ror  Or 00ér
1 (8% 1 &% )
R 31
RP (2 a2 Tamwar V) A3

Equation (A.31) can be used to calculate the
temperature at r = O on the ray 8 = A/2 (j = )
where due to symmetry, t; ; . = ;w11 +1.n
=ty mim imtn=lto1a+1. a0d ¥y, =
—¥_, ;. If these symmetry conditions are used
in the finite difference approximation of (A.31),
the following equation is obtained for the first
half time step:

0,1 — Lo,i,n _ Witn (T4, — [1,l~-1.n)

Ar < 2Ar A6

Ar/2
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2 120, —t,) velocity and temperature are obtained by using

= RP [ Ar? the symmetry conditions. For example at § = 0
1(1!+1n_2t1in+t1 -1, n)] Wi =W, (A.34)
2 Ar® A? by =ty (A35)
(A32) Vi = —¥i -1 (A.36)

- R—ﬁ Wo,l,n
Equations for the temperature and axial velocity

For the second half of the time step on 8 = 0 are obtained by substituting (A.34),

¢ _1 v ¢ —t (A.35) and (A.36) into the finite difference repre-
ahe 7 by v ( BTV ) sentations of (5) and (7).
= 2 [2(21,1 ~ to,1) D. Procedure
RP Ar? The computational procedure to go from
Uity 40— 2t 0nt Eia-in nAz to (n + 1) Az is as follows:
+ 2 Ar? AB? (1) Solve for the temperature at the new time

(n + 1) Az. The finite difference representation
of (5) is used for the interior points. Equations
(A.24), (A.32), (A.33), and (A.35) are used to

~ gp Wo.rn (A33)

Equation (A.32) is implicit in r so it is necessary
to invert a matrix for the ray 6 = 4/2 in order
to calculate %, . Equation (A.33) is explicit so
to.1,n+1 can be calculated directly from it.

The values of the unknowns are much more
easily obtained on the boundaries § = 0 and
8 = = than at the wall or at r = 0. The vorticity

define the temperature on the boundaries.

(2) Equation (A.30)} is used to evaluate the
vorticity at the solid boundary.

(3) The finite difference representation of (2)
is used to calculate &, ;.

(4) Equation (A.16) is solved for ¥, 4.

(5) Check the vorticity to see if it has con-

and stream function are zero there. The axial verged. If not return to (1).

ETUDE EXPERIMENTALE ET NUMERIQUE DE L’EFFET DE L'ECOULEMENT
SECONDAIRE SUR LE CHAMP DE TEMPERATURE ET L'ECOULEMENT PRIMAIRE
DANS UN TUBE HORIZONTAL CHAUFFE.

Résumé—Le champ de température et le profil de vitesse axiale entiérement développé sont mesurés pour
un fluide avec un nombre de Prandtl de 80 4 la sortie d’un Jong tube horizontal qui est chauffé électrique-
ment. Les équations aux dérivées partielles de définition sont résolues par des techniques de différences
finies pour obtenir les configurations d’écoulement secondaire ainsi que les champs de température et de
vitesse axiale. On a trouvé des écoulements secondaires relativement élevés pour des différences de tem-
pérature entre la paroi et le fluide aussi faibles que 0,03 °C. Pour (GP)* plus grand que 30, la théorie de
la couche limite semble éntre une bonne approximation du champ de température. Il existe des gradients
de températures élevés prés de la paroi; les isothermes dans le noyau sont horizontales et il y a une variation
sensible de température dans la direction verticale. Bien que I’écoulement secondaire avait un grand effet
sur le champ de température, il en avait peu sur la distribution de vitesse axiale telle qu’elle a été prédite
pour un nombre de Prandtl élevé. La configuration d'écoulement secondaire montrait des vitesses vers
le haut relativement élevées prés de la paroi et dans le noyau des vitesses vers le bas faibles. Les épaisseurs
des couches limites de vitesse et de température sont approximativement égales. Ces résultats sont en
accord avec un traitement du probléme basé sur un raisonnement dimensionnel, qui a été présenté dans
un article précédent venant de ce laboratoire.

RECHNERISCHE UND EXPERIMENTELLE UNTERSUCHUNG DES EINFLUSSES DER
SEKUNDARSTROMUNG AUF DAS TEMPERATURFELD UND DIE
PRIMARSTROMUNG IN EINEM BEHEIZTEN WAAGERECHTEN ROHR

Zusammenfassung—Das volistindig entwickelt Temperaturfeld und das axiale Geschwindigkeitsprofil
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emer Fliissigkeit wurden am Austritt emes langen zyhndrischen Rohres, das elektrisch beheizt ist, ber emner
Prandtl-Zahl von 80 gemessen.

Die beschreibenden partiellen Differentialgleichungen, fur das Sekundar-Stromungsfeld werden mat
einem Differenzenverfahren geldst und liefern sowohl das Temperaturfeld als auch das axiale Gesch-
windigkeitsfeld. Verhiltnisméissig grosse Sekundirstrémungen wurden bei Temperaturdifferenzen von
0,05 °F zwischen der Aussenwand und der Fliissigkeit gefunden. Fiir (GP)* grésser als 30 erhélt man mt
der Grenzschttheorie eine gute Naherung fiir das tatsichliche Temperaturfeld. Grosse Temperaturgradien-
ten treten in der Nihe der Aussenwand auf; die Isothermen 1m Kern verlaufen horizontal. Zu vertikaler
Richtung besteht ein bedeutender Temperaturunterschied. Obwohl die Sekundérstromung das Tempera-
tuefled stark verindert hat sie wenig Einfluss auf die Verteilung der axialen Geschwindigkeit, wie es fiir
eine grosse Prandtl-Zahl vorausgesagt wurde. Das Sekundarstromungsfeld zeigte relativ grosse nach
oben gerichtete Geschwindigkeiten nahe der Rohrwand und kleinere abwirts gerichtete Geschwindigkeiten
im Kern. Die Dicke der Geschwindigkeits- und der Temperaturgrenzschicht sind anniahernd gleich

Diese Ergebnisse stimmen mit einer Behandlung des Problems iiberein, die sich auf eine Dimensions-

betrachtung stiitzt und in einer vorhergehenden Veréffentlichung des Laboratoriums gezeigt wurde.

YUCJIEHHBIA PACYET Y 9KCIEPUMEHTAJBHOE MNCCJIEJOBAHULE
BJINAHUSA BTOPUYHOTO IIOTOKA HA TEMIEPATYPHOE NOJE 1
OCHOBHONI TIOTOK B l'OPU3OHTAJILHON HATPEBAEMON TPYVBHE

Ansoranua—II3MepaHbl  [10JIHOCTHIO DPABBUTEHE MPOPUIM TEMIEPATYPH M AKCHAIbHON
CKOPOCTH HA BHIXOHE M3 [IMHHON TOPM3OHTANbHOW TPYOHI, HArpeBAEMOM ANEKTPHYECKUM
ToKOM TIpH 3Hadvennu ymcaa Ilpaupras xupkoctn pasHom 80. Onpemeaswoume muddepe-
HIMAThHbIE YPABHEHUA B 4ACTHEIX TPOU3BOJHBIX PelIAlOTCA METO/[0OM KOHEUHBIX pasHocreli
JJIA ONMMCAHNUA MOfeNell BTOPUYHOTO TeUeHNs, a TAKMKe TEMIEPATYPHOTO MOAA H AKCHATbHON
ckopoctit. JIJia pasnocreit reMnepaTypst cTenky i #uxkocTy B 0,00°F HaliteHB! OTHOCHTENBHO
GosbIMe BTOpUYHBIE Tedenus. OxaseiBaercd, 4ro mpu (GP)V4 > 30 temmeparypuoe nomue
XOpOIlO ANNPOKCUMUPYETCH ¢ IIOMOHIBIO TEOPUM [OFPAHMYHOrO CIHOA. Y CTEHKH UMEIOT MECTO
(ONBIIHe TEMIIEPATYPHBIE IPAJMEHTH ; H30TEPMHL B AApe ABIAKTCH FOPHBOHTANHBIMH, U B
BEPTMKAIBHOM HANPABIEHNM NPOMCXOUT 3HAUNTENBHOE UBMEHEHMe Temmeparypsl. Xors
BTOPUYHOE TeYeHHe OKashlBaeT GObINOe BIMAHMAE HA TEMIEPATYyPHOE MOJe, OHO MAJIO BIIHACT
HA paclpefieslenye AKCHATbHON CKOpoOCTH, Kax OBLTO PACCYMTAHO AIA GOJIBINOTO WHCIA
[Mpaunras. BGaMsu CTEHOK MMEOT MECTO OTHOCMTENBHO GOJBIINE HANPABJIEHHBE BBEPX
CKOPOCTH BTOPMYHBIX TEUEHWIl M MQUIble HANPABJIEHHBe BHM3 CKOpOCTH B Agpe. Tosmunsl
MOTPAHUYHKEIX CTOEB CKOPOCTH M TEMIEPATyphl TPHOIMKEHHO DAaBHHL. DTH Pe3yTbTaTH
COTACYIOTCA © JTAHHBIMIL PAasMEPHOTO AHAJNG3A, NPENCTABIEHHOr0 B Mpeamylielt crarbe
JAaHHOM jabopartopun.



